Turunan kedua dari f(x)=sin⁴(¶/4 -x)
Pertanyaan
1 Jawaban
-
1. Jawaban arsetpopeye
Turunan kedua dari f(x) = sin⁴ (π/4 - x)
Jawaban
Pendahuluan
Jika u ada suatu fungsi dalam x
y = sin u ⇒ y' = cos u . u'
y = cos u ⇒ y' = - sin u . u'
y = uⁿ ⇒ y' = n uⁿ⁻¹ . u'
y = u . v ⇒ y' = u' v + v' u
Rumus sudut rangkap pada sinus
2 sin x cos x = sin 2x
Pembahasan
f(x) = sin⁴ (π/4 - x)
f(x) = [sin (π/4 - x)]⁴
f'(x) = 4 [sin (π/4 - x)]³ . cos (π/4 - x) . -1
f'(x) = - 4 sin³ (π/4 - x) . cos (π/4 - x)
f'(x) = u . v
Misal
u = - 4 sin³ (π/4 - x) = -4 [sin (π/4 - x)]³
u' = -12 [sin (π/4 - x)]² . cos (π/4 - x) . -1
u' = 12 sin² (π/4 - x) cos (π/4 - x)
v = cos (π/4 - x)
v' = - sin (π/4 - x) . -1
v' = sin (π/4 - x)
f''(x) = u' v + v' u
f"(x) = 12 sin² (π/4 - x) cos (π/4 - x) . cos (π/4 - x) + sin (π/4 - x) . - 4 sin³ (π/4 - x)
f"(x) = 12 sin² (π/4 - x) cos² (π/4 - x) - 4 sin⁴ (π/4 - x)
Jika lebih sederhana lagi, maka kita ubah lagi
f"(x) = 3 . 4 sin² (π/4 - x) cos² (π/4 - x) - 4 sin⁴ (π/4 - x)
f"(x) = 3 . [2 sin (π/4 - x) cos (π/4 - x)]² - 4 sin⁴ (π/4 - x)
f"(x) = 3 . [sin 2(π/4 - x)]² - 4 sin⁴ (π/4 - x)
f"(x) = 3 . [sin (π/2 - 2x)]² - 4 sin⁴ (π/4 - x)
f"(x) = 3 sin² (π/2 - 2x) - 4 sin⁴ (π/4 - x)
Kesimpulan
f(x) = sin⁴ (π/4 - x)
maka turunan keduanya
f"(x) = 12 sin² (π/4 - x) cos² (π/4 - x) - 4 sin⁴ (π/4 - x)
f"(x) = 3 sin² (π/2 - 2x) - 4 sin⁴ (π/4 - x)
Pelajari lebih lanjut
https://brainly.co.id/tugas/9759954
------------------------------------------------
Detil Jawaban
Kelas : 12
Mapel : Matematika Peminatan
Kategori : Turunan
Kode : 12.2.2
Kata Kunci : Turunan trigonometri